a2 United States Patent

US009471379B2

10) Patent No.: US 9,471,379 B2

Vernier 45) Date of Patent: *Oct. 18, 2016
(54) GENERATING TIMING SEQUENCE FOR (56) References Cited
ACTIVATING RESOURCES LINKED
THROUGH TIME DEPENDENCY U.S. PATENT DOCUMENTS
RELATIONSHIPS 5,890,134 A 3/1999 Fox
6,088,626 A 7/2000 Lilly et al.
(71) Applicant: International Business Machines 6463346 Bl 10/2002 Fllocyk;arat et al.
Corporation, Armonk, NY (US) 7,082,605 B2 7/2006 Alletson et al.
7,114,154 Bl 9/2006 Crohn
(72) Inventor: Dominique Vernier, Brussels (BE) (Continued)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
« - bi disclai h fthi Zhang et al., “Task Scheduling and Voltage Selection for Energy
(*) Notice: Subject to any disclaimer, the term of this i oo DAC2002, Jun. 10-14, 2002, New Orleans,
%atselg IISSZ’ESHS;dBOI d:gJSUSted under 35 7 Gana, USA. pp. 183-188.
o ’ (Continued)
This patent is subject to a terminal dis-
claimer.
Primary Examiner — Eric C Wai
o4
(21) Appl. No.: 14/271,785 (74) Attorney, Agent, or Firm — Schmeiser, Olsen &
(22) Filed: May 7, 2014 Watts, LLP; John Pivnichny
. E)
(65) Prior Publication Data (57) ABSTRACT
US 2014/0245321 Al Aug. 28, 2014 A method, computer program product, and computer system
Related U.S. Application Data fc;lrk ggneﬁitingha .timin(ig squence fog a.ctivit.ing fs%qrces
. . o inked through time dependency relationships. 1rect
(63) Continuation of application No. 12/876,368, filed on Acyclic Graph (DAG) includes nodes and directed edges.
Sep. 7, 2010, now Pat. No. 8,793,690. Each node represents a unique resource and is a predefined
. L. L. Recovery Time Objective (RTO) node or an undefined RTO
(30) Foreign Application Priority Data node. Each directed edge directly connects two nodes and
represents a time delay between the two nodes. The nodes
Oct. 9, 2009 (EP) cooeiviiciiccce 09172669 are topologically sorted to order the nodes in a dependency
sequence of ordered nodes. A corrected RTO is computed for
(51) Imt. ClL . . .
GO6F 9/50 (2006.01) each ordered node after which an estimated RTO is calcu-
GOG6F 9/48 (200 6. o1) lated as a calculated RTO for each remaining undefined RTO
GOG6F 9/46 (2006.01) node. The ordered nodes in the dependency sequence are
5 US. Cl ’ reordered according to an ascending order of the corrected
¢2) CPC ' GOGF 9/5011 (2013.01): GOGF 9/4843 RTO of the ordered nodes to form a timing sequence for
"""""" (2013.01); (Go6 F 9/)5 038 (2013.01) activating the unique resources represented by the multiple
D ’ nodes.
(58) Field of Classification Search
None
See application file for complete search history. 18 Claims, 11 Drawing Sheets
202
Internal
Forimat
Inputs
: 206 208 210
004 \ \ 4
g Cotrected RTO
Topological and Calculate {4 Calculate
Sort Estimated RTO Corrected RTO Estimated RTO
Initialization
214 212
y 4
e s
Results Sources

US 9,471,379 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,246,075 Bl 7/2007 Testa
7,533,043 B2 5/2009 Carney et al.
8,078,691 B2 12/2011 Zhang et al.
8,793,690 B2 7/2014 Vernier

2005/0197877 Al
2008/0027687 Al
2009/0133027 Al
2009/0171707 Al
2009/0171731 Al
2009/0172769 Al

9/2005 Kalinoski
1/2008 Aldridge
5/2009 Gunning et al.
7/2009 Bobak et al.
7/2009 Bobak et al.
7/2009 Bobak et al.

OTHER PUBLICATIONS

Yuan et al.; Time Optimization Heuristics for Scheduling Budget-
Constrained Grid Workflows, vol. 26, No. 2 (Feb. 2009). English
Abstract. [online]. 2 pages. [retrieved on Jun. 23, 2009]. Retrieved

from the Internet:< URL:www.airiti.com/CEPS/ec__en/
ecjnlarticleView.aspx?jnlcattype=1&jnlptype=4&jnltype=41
&jnliid=1556&issueiid=79271&atliid=1516152 >.

Yuan et al.; Cost-effective Heuristics for Workflow Scheduling in
Grid Computing Economy. IEEE. The Sixth International Confer-
ence on Grid and Cooperative Computing (GCC 2007). 8 pages. <
URL: ieeexplore.icee.org/xpl/freeabs_ all.jsp?tp=
&arnumber=4293797&isnumber=4293747 >.

Office Action (Maile date Apr. 26, 2013) for U.S. Appl. No.
12/876,368, filed Sep. 7, 2010, Conf. No. 1193.

Response (filed Aug. 22, 2013) for U.S. Appl. No. 12/876,368, filed
Sep. 7, 2010, Conf. No. 1193.

Final Office Action (Maile date Dec. 19, 2013) for U.S. Appl. No.
12/876,368, filed Sep. 7, 2010, Conf. No. 1193.

Final Response (filed Feb. 19, 2014) for U.S. Appl. No. 12/876,368,
filed Sep. 7, 2010, Conf. No. 1193.

Notice of Allowance (Maile date Mar. 17, 2014) for U.S. Appl. No.
12/876,368, filed Sep. 7, 2010, Conf. No. 1193.

* cited by examiner

US 9,471,379 B2

Sheet 1 of 11

Oct. 18, 2016

U.S. Patent

Hnsey

Jeuwiod e

[eusyu]

8Ll

JOLIRAUCDH
inding

A4

ynsay
18w 4

0cl

[BUi8IXg ~

¢cl

ydeo)
oILTH] le%g)
yoey
104
aulbug

I "OId

sydein)
pajosuu0s

.}

/
9L

put4

/
4%

EBPAD
suiejuon)

0L
SOA

ydeib

ayL
ae|nojen

UoIjoB.LI0D
104
S9|0AD
Aejdsi(

!
zh

sinduy
}BWo
EIBEMT

A

JBLIBAUCD
induj

sinduy
1euo
[eulaxy

44]%

US 9,471,379 B2

Sheet 2 of 11

Oct. 18, 2016

U.S. Patent

S80IN0S8Y

6 IDIAd

s)nsay

HoS

cle

Q1Y pejewis3y
aje|nojen

h 4

1ewo
[euisyu]

1] %4

14 %4
uonezjjeniu]
O.LM pa1oaLo) O1¥ psjewisy
oyenoey ¢ pue)

OlY pelalind

{ \

207 90¢

HOgG
jeoibojodoj
~
x ¥0c
sinduj
w04
|eulaiu] ~
c0¢

US 9,471,379 B2

Sheet 3 of 11

Oct. 18, 2016

U.S. Patent

& O

—P0&

T dnoss-
SYRSAEF BIUHBS3I-
alegraleguUeneMEIs L
GLE~ symssy = | . umyynsay | { « ey 5~ gpe
{ drost- | |
0IE \
Bomosa
sjegdueigam SiRISaLn) W3
Sunsaieisieds ﬁ &
=4 fauapusdap- 804n05aL- Bulgiale|S g -3
Jungusssamyaiels = pustep UE3| 004 01N pAIENHSE I
sung: mgwwmaé»m_% 2k [7 SjReg:gLYpaI8H0a 3
908~ fauspuateq = Bumguoissanixyply =
BULS-BURY
Aauapusdsp aainsay =
. agmnesal/”
AN /x

|
ydeid- ydeid- \\w

US 9,471,379 B2

Sheet 4 of 11

Oct. 18, 2016

U.S. Patent

JRUBAUOCY sWIi] -NOHD

v OIAd

[
80

Joje|inoled Ol

90t

J0S$8201d
ydelo

c0v

Jauos

14817

U.S. Patent Oct. 18, 2016 Sheet 5 of 11 US 9,471,379 B2

FIG. 6

d"

dn

O

R2
R
FIG. 5

d1

US 9,471,379 B2

Sheet 6 of 11

Oct. 18, 2016

U.S. Patent

00:21 AepuoN=01¥4

£<!

00:1} Aepuop=p

Yc=0.1d a

Yyg0=p

uMmowUN=0 1Y

Up=01d @

Yi=p

Ué=0ld @

00:9 ABpuO=aLIY/81EP UCHEINWIS

U.S. Patent Oct. 18, 2016 Sheet 7 of 11 US 9,471,379 B2

US 9,471,379 B2

Sheet 8 of 11

Oct. 18, 2016

U.S. Patent

Ur=01d0

Yi=01do

UG 0=p
Yo=p

UMOUNUN=0 1Y

Up=p
/

Ue=01d0

-
4

Ul=01d

Ue=p

Ye=01d0D QWU

Yc=01d @

NV 00:9 Aepuoj=auif/elep UonenwIS

US 9,471,379 B2

Sheet 9 of 11

Oct. 18, 2016

U.S. Patent

Us'0=01d4

O “9Id

Ur=0140

Ul=01dD

()

=P

/
N\

ed

YE=01dO

Us'0=p
Yo=p

Ui=0l1d

Ue=014d2D @

Yc=01d @

WV 00:9 ABPUCIN=aLIY/S}EP UOHEINWIS

U.S. Patent Oct. 18, 2016 Sheet 10 of 11 US 9,471,379 B2

US 9,471,379 B2

Sheet 11 of 11

Oct. 18, 2016

U.S. Patent

2o1A8(INdINO

obeinig

—

/

oLcl

[

8021

Ndo

c0cl

Aiowa

90¢1

821A8(] Induj

[

¥0cl

US 9,471,379 B2

1

GENERATING TIMING SEQUENCE FOR
ACTIVATING RESOURCES LINKED
THROUGH TIME DEPENDENCY
RELATIONSHIPS

This application is a continuation application claiming
priority to U.S. patent application Ser. No. 12/876,368, filed
Sep. 7, 2010, now U.S. Pat. No. 8,793,690, issued Jul. 29,
2014.

FIELD OF THE INVENTION

The present invention relates generally to the field of
resource management and more particularly to a system and
method for generating an activation sequence of resources in
consideration of their interdependencies and Recovery Time
Objective.

BACKGROUND OF THE INVENTION

IT system often deals with resources and their availability.
In case of disaster, all systems could be off and thus should
be reactivated in a way to minimize the business impact.
Service Level Agreement (SLA), which may for example
define how long a system can be off without impacting the
business. Once this period ends, the system should be back
on. The acceptable elapse time that a resource can be off
without impacting the business is generally defined as the
Recovery Time Objective (RTO).

IT Systems are not anymore monolithic. With new tech-
nologies, such as Service Oriented Architecture, an end-user
application uses different services provided by other systems
and these services also can use other services and so on. So,
dependencies exist between the end-user applications and
services. These services use also other systems, such as
web-servers, application-servers, databases and so on. This
is another level of dependencies. These intermediate sys-
tems must be on to allow the full system to run correctly.
This is not only true at the application level components but
also at the infrastructure level. The systems such as the
above mentioned (end-user applications, services,
databases . . .) need an infrastructure to run. The infrastruc-
ture is a composition of servers, network, routers, power
supply, etc. Each of these components is in fact a resource
which must be available at a certain moment to respect the
business need and these resources are linked to each other
because some resources need others to be fully operational.

It is also possible that a resource needs another resource
but not immediately. For example, a resource needs another
but only one hour after its own activation or next Wednesday
or the first day of the next month. This means that a
dependency delay also exits.

Then it becomes important to find the optimized activa-
tion sequence for all resources composing a solution in order
to minimize the business impact.

The present invention offers a solution to this need.

SUMMARY OF THE INVENTION

The present invention provides a method, and an associ-
ated computer program product and computer system, for
generating a timing sequence for activating resources linked
through time dependency relationships, said method com-
prising:

providing a first Direct Acyclic Graph (DAG) having a
simulation date and comprising multiple nodes and multiple
directed edges, wherein each node of the multiple nodes

10

20

35

40

45

55

2

represents a unique resource and is either a predefined
Recovery Time Objective (RTO) node comprising a pre-
defined RTO denoting a maximum elapsed time that the
unique resource is permitted to remain in its current state or
an undefined RTO node comprising a positive infinite value,
wherein the multiple nodes comprise at least two predefined
RTO nodes and at least zero undefined RTO nodes, wherein
each directed edge of the multiple direct edges represents a
time delay and directly connects two nodes of the multiple
nodes in a direction from a predecessor node of the two
nodes to a successor node of the two nodes, wherein a
predecessor resource being the unique resource represented
by the predecessor node has a time dependency on a
successor resource being the unique resource represented by
the successor node such that the predecessor resource
requires the successor resource to be in the successor
resource’s target state no later than a time consisting of the
simulation date incremented by the time delay;

topologically sorting the nodes of the multiple nodes to
order the multiple nodes in a dependency sequence of
ordered nodes, such that each node in the dependency
sequence whose unique resource has a time dependency on
the unique resource of at least one other node in the
dependency sequence is placed in the dependency sequence
before each node of the at least one other node;

in traversal of the ordered nodes in the dependency
sequence, computing a corrected RTO for each ordered node
in the dependency sequence as a function of (i) the pre-
defined RTO of said each ordered node and, for each
predecessor node connected to said each ordered node: (ii)
the corrected RTO of said each predecessor node and (iii) the
time delay represented by the edge that directly connects
said each predecessor node to said each ordered node;

after said computing the corrected RTO for each ordered
node, calculating an estimated RTO as a corrected RTO for
each ordered node remaining as an undefined RTO node,
said estimated RTO calculated as a function of: (a) the
corrected RTO of each successor node of each remaining
undefined RTO node and (b) the time delay represented by
the edge that directly connects each remaining undefined
RTO node to said each successor node; and

reordering the ordered nodes in the dependency sequence
according to an ascending order of the corrected RTO of the
ordered nodes to form an activation sequence of the multiple
nodes defining a time ordering of activation of the unique
resources represented by the multiple nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of a method used in the present
invention.

FIG. 2 shows the steps to determine an optimized acti-
vation sequence of resources as a function of their interde-
pendencies and recovery time objective, in accordance with
embodiments of the present invention.

FIG. 3 depicts a data model used in the present invention.

FIG. 4 depicts different components used in the present
invention.

FIG. 5 depicts a resource with its predecessors, in accor-
dance with embodiments of the present invention.

FIG. 6 depicts a resource with its successors, in accor-
dance with embodiments of the present invention.

FIG. 7 depicts an example of input data pertaining to
nodes of a directed graph, in accordance with embodiments
of the present invention.

US 9,471,379 B2

3

FIG. 8 depicts the result of the topological sort of the
nodes in FIG. 7, in accordance with embodiments of the
present invention.

FIG. 9 depicts the result after the calculation of corrected
RTO of the nodes in FIG. 7, in accordance with embodi-
ments of the present invention.

FIG. 10 depicts the result after the calculation of the
estimated RTO of the nodes in FIG. 9, in accordance with
embodiments of the present invention.

FIG. 11 depicts a reordering of the nodes of FIG. 8
through use of the corrected RTO of the nodes in 10, in
accordance with embodiments of the present invention.

FIG. 12 depicts a computer system for implementing
embodiments of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments of the invention are described herein after
by way of examples with reference to the accompanying
figures and drawings. The following is a short outline of the
concepts, components and wording used in the present
description.

Resource is any physical or virtual entity which is in a
current state and could be move to a target state. To move a
resource from its current state to the target state, the resource
could need other resources. Activating a resource means
taking an action to move the resource from the current state
to the target state. A state doesn’t mean that a resource can
provide a given functionality to its predecessor because this
can be achieved by dividing a single resource into several
resources, each providing its own functionality. A state
means that a resource needs a set of resources to be able to
run in the given state. The state of a resource determines the
dependency on which the resource is depending on.

A dependency is a way to describe that a resource needs
another resource before having the target state. Dependency
has different attributes such as a dependency time delay. The
dependency time delay may be a literal value or an expres-
sion. The expression can be transformed to a literal value
using a date as reference. The dependency can be active or
not depending on the target state of its source. A non-active
dependency can be ignored by the method in one embodi-
ment.

A successor of an original resource is a resource needed
by the original resource to move to the target state of the
successor resource.

A predecessor of an original resource is a resource which
needs the original resource to move to the target state of the
original resource.

A source of a dependency: as the dependencies are
directed, the source dependency is the resource from which
the dependency relationship starts.

A target of a dependency: as the dependencies are
directed, the target dependency is the resource to which the
dependency relationship ends.

An incoming dependency for a resource is a dependency
which has the resource as target.

An outgoing dependency for a resource is a dependency
which has the resource as source.

A CRON expression means ‘Computer Run On’ expres-
sion as defined in the computer world. A CRON is com-
monly a string comprising several fields that represent a set
of times.

Delay on a dependency is the time delay that a resource
of a predecessor can wait for the successor of the predeces-
sor to change into the successor’s target state. The time can

10

15

20

25

30

35

40

45

50

55

60

65

4

be represented by a literal value or a CRON expression.
CRON expression is used here to represent a time expres-
sion, but a skilled person in the art could find another way
of representing such expression. If a dependency has a time
delay equal to zero, then the dependency is a synchronous
dependency (i.e., the resource needs the dependent resource
right-away). Otherwise if the time delay is a positive value,
then the dependency is an asynchronous dependency (i.e.,
the resource can wait for the dependent resource). A depen-
dency time delay can also be negative; for example, resource
‘A’ depends on ‘B’, and ‘B’ needs 2 hours to be able to
provide the service requested by ‘A’. This dependency can
be expressed by stating that ‘A’ depends on ‘B’ with a time
delay of ‘-2’ hours. In other words, the application ‘B’
should start 2 hours before the RTO of ‘A’. The dependency
time delay is often defined by the functional requirements
and the design of the solution.

State Expression of a dependency is an expression which
determines if a dependency is active or not.

RTO means Recovery Time Objective. It is the acceptable
elapsed time that a resource can stay at the current state
without impacting the business. The time can be defined as
a literal value or as a CRON expression.

A corrected RTO is an RTO that satisfies all RTOs and
time delays of its predecessors recursively.

An estimated RTO is an RTO calculated for a resource
where no ‘Corrected RTO’ was obtained. Different methods
can be applied to calculate an estimated RTO. The estimated
RTO is usually calculated based on the successors and
outgoing dependencies of a resource. This attribute is rep-
resented in the present invention by a Boolean flag. If the
flag is set to true then the corrected RTO attribute contains
an estimated RTO; otherwise the corrected RTO contains a
corrected RTO based on the RTO given by the business.

A simulation date is used to convert a CRON expressed
RTO or a time delay in a literal value. For example if an
expression for an RTO is that “the resource must be ON by
next Monday 11:00 AM” and the simulation date is “Mon-
day 8:00 AM”, the RTO in literal value is 3 hours. Thus, a
simulation date expresses a specified time on a specified date
and therefore is in units of time, so that a simulation date can
be incremented by a time delay. Simulation dates may vary
and different simulation dates may be provided by using
either a vector of simulation dates or a CRON expression
and thus will provide different results.

A graph that is used herein is a directed weighted graph
in the sense of the graph theory. It is a collection of vertexes
representing resources and directed edges representing time
dependencies. Each edge has a vertex as source and a vertex
as target. A vertex is also called a “node”. The edges are
weighted with the time delay. By convention, the edges are
defined as playing the role of ‘dependency’ (e.g., resource
R1 depends on resource R2) but the opposite role, namely
‘serve,” could also be defined (e.g., resource R2 serves
resource R1) without departing from the spirit and scope of
the present invention. The resources and dependencies are
represented by a directed graph where vertices are resources
and edges are dependencies. Each resource has a Recovery
Time Objective property and each dependency has a time
delay property. If the delay property is zero, the dependency
is synchronous; otherwise the dependency is asynchronous.

A directed graph is called weakly connected if replacing
all of its directed edges with undirected edges produces a
connected undirected graph. An undirected graph is called
connected if every pair of distinct vertices in the graph can
be connected through some path. If a graph contains mul-

US 9,471,379 B2

5

tiple weakly connected graphs, the process of the present
invention is applied to each weakly connected graph sepa-
rately.

FIG. 1 is a general flow chart of a method used in the
present invention. In the first step 102, an external format of
the graph is defined. The format may be defined as a table,
an XML format, a database or any data-model and/or
technology that can support a directed graph model. In step
104, the external format is called, read and transformed into
an internal computer format (step 106). The internal format
may satisfy a predefined data model as the one shown in
FIG. 3. Afterwards, step 108 will determine which depen-
dencies are active or not. Depending on their source target
state and their dependency state expression, the non-active
dependencies are removed from the graph. In the next step
110, the process checks if the graph contains a cycle. If yes,
the process then stops in step 112 as no optimized activation
sequence can be found because there exists a cycle in the
graph. A cycle will prevent the possibility to find an acti-
vation sequence. If resources are fine grained enough and
follow the principle of ‘separation of concerns’ no cycle
should be discovered. As known by those skilled in the art,
in computer science, Separation of Concerns (SoC) is the
process of separating a computer program into distinct
features that overlap in functionality as little as possible.

Going back to step 110, if no cycle exists in the graph then
the process continues with step 114. In step 114, the different
weakly connected graphs are searched. Next step 116 is
repeated for each simulation date and each weakly con-
nected graph found in a previous step. Step 116 is further
detailed with reference to FIG. 2. The results generated are
stored in an internal format (step 118). In step 120, the
results are converted into a user friendly format and pro-
vided to the end user in step 122 in the form of a table, a
graphic, and/or reports.

FIG. 2 details the different steps performed by step 116 of
FIG. 1 to determine an optimized activation sequence of
resources as a function of their interdependencies and recov-
ery time objective, in accordance with embodiments of the
present invention. The method depicted in FIG. 2 generates
a timing sequence for activating resources linked through
time dependency relationships. The method depicted in FIG.
2 provides a first Direct Acyclic Graph (DAG) having a
simulation date and comprising multiple nodes and multiple
directed edges. The graph representation of the DAG is
received in an internal computer format (step 202). As per
FIG. 1, the process is run for each weakly connected graph
for each simulation date. Each node of the multiple nodes in
the DAG represents a unique resource and is either a
predefined Recovery Time Objective (RTO) node compris-
ing a predefined RTO denoting a maximum elapsed time that
the unique resource is permitted to remain in its current state
or an undefined RTO node comprising a positive infinite
value. In one embodiment, the multiple nodes comprise at
least two predefined RTO nodes and at least zero (i.e., zero
or more) undefined RTO nodes, wherein each directed edge
of the multiple direct edges represents a time delay and
directly connects two nodes of the multiple nodes in a
direction from a predecessor node of the two nodes to a
successor node of the two nodes. A predecessor resource is
the unique resource represented by the predecessor node and
has a time dependency on a successor resource. The suc-
cessor resource is the unique resource represented by the
successor node such that the predecessor resource requires
the successor resource to be in the successor resource’s
target state no later than a time consisting of the simulation
date incremented by the time delay.

20

25

35

40

45

55

6

In step 204, a topological sort is done on the graph.
Different algorithms may be used to realize this sort opera-
tion such as the known ‘Kahn’ or ‘depth-first search’ algo-
rithms . . . to name a few of those that a skilled person could
apply. The topological sort is executed only on directed
acyclic graphs identified by steps 110 and 114 of FIG. 1. The
topological sort issues a sequence of resources ordered in a
way that if a first resource (R1) has a direct or an indirect
dependency with another resource (R2) then R1 will be
placed before R2 in the sequence.

In next step 206, an initialization of the corrected RTO
value is made. The corrected RTO is initialized with a
positive infinite value and the estimated RTO flag is set to
false. The positive infinite value will be represented as the
maximum number that the attribute that represents the RTO
can get. Often the computer language offers a literal called
MAX_VALUE for a given numerical type. If the current
state timestamp is not defined, it will be set to the earliest
date that the system can support. This means the resource
has always been in this current state.

In step 208 the ‘Corrected RTO’ is computed. This is done
by traversing the resources as sorted during the topologic
sort step, and the corrected RTO is calculated for each
resource R as illustrated in FIG. 5.

Firstly, the current ‘Corrected RTO’ for all resources R,
and R is determined, where i denotes a given resource R,
being the source of a dependency (Ri, R). In other words, R,
is one of the predecessors of R. The current ‘Corrected RTO’
is determined as follows.

If the current ‘Corrected RTO’ is defined (i.e., not equal
to a positive infinite value), then the ‘Corrected RTO’ is set
as the current ‘Corrected RTO’.

If the ‘Corrected RTO’ is not defined (i.e., equal to a
positive infinite value) and if the current state of the resource
is not equal to the target state, then: (i) if the RTO is a literal,
then the current ‘Corrected RTO’ takes this literal as value;
or (ii) if the RTO is a CRON expression, then the current
‘Corrected RTO’ takes the literal value calculated based on
the CRON expression and the simulation date.

If the ‘Corrected RTO’ is not defined (i.e., equal to a
positive infinite value) and if the current state of the resource
is equal to the target state, then the ‘Corrected RTO’ will be
set with the difference between the current state timestamp
and the simulation date.

Secondly, the new ‘Corrected RTO’ is set with a minimum
value X, calculated as a function of all resources R, having
a dependence on R (R,, R) (meaning for all incoming
dependencies) and R’s current ‘Corrected RTO’, wherein X,
is the sum of the current ‘Corrected RTO’ of the resource R,
and the time delay d, of the edge between R, and R. If R
current ‘Corrected RTO’ is not the minimum and R has its
current state equal to the target state, then an error should be
raised because R should be activated earlier to satisfy the
new constraint. If a resource has no predecessor, such as for
the first resource in the topological sort, then as there is no
(R;, R) dependency and there is no X,, and thus the minimum
value is the current ‘Corrected RTO’ of R. If the time delay
is a CRON expression, the conversion to a literal value is
done by calculating the next date using, as base date, the sum
of the source resource current ‘Corrected RTO’ and the
simulation date. Once the next date is found, the base date
is subtracted from the next date to find the literal time delay.

Once all Corrected RTOs are computed, if there remains
one or more resource(s) still having an undefined ‘Corrected
RTO’, step 210 may be performed to compute an Estimated
RTO for each such resource.

US 9,471,379 B2

7

It is to be noted that while an undefined RTO is not
recommended, the present invention comprises a step to take
into consideration such a case having an undefined RTO. An
undefined RTO may appear either if the resources are not
specified originally by a business entity or if no other
resource imposes an RTO on the resources. This may also
happen when a resource has all its predecessors with an
undefined ‘Corrected RTO’.

Thus in step 208 in traversal of the ordered nodes in the
dependency sequence, a corrected RTO is computed for each
ordered node in the dependency sequence as a function of (i)
the predefined RTO of said each ordered node and, for each
predecessor node connected to said each ordered node: (ii)
the corrected RTO of said each predecessor node and (iii) the
time delay represented by the edge that directly connects
said each predecessor node to said each ordered node.

As an option not shown in FIG. 2, the process may skip
step 210 in case there is no undefined RTO.

The ‘Estimated RTO’ is calculated in step 210 by travers-
ing the resources as sorted during the topological sort step in
the reverse order, and is calculated for each resource R (as
illustrated in FIG. 6). If a resource R has a positive infinite
value as ‘Corrected RTO’, it is set to a negative infinite
value, the ‘Hstimated RTO’ flag is set to true and the
estimated RTO becomes the maximum value X, calculated
in function of all resources R, where i1 denotes a given a
resource being the target of a dependency (R, R,) (meaning
for all outgoing dependencies) and R’s ‘Corrected RTO’,
wherein X,, is the difference of the R, ‘Corrected RTO’ and
the time delay d, of the edge between R and R,. Otherwise,
the resource with a finite ‘Corrected RTO’ is skipped and no
‘Estimate RTO’ is calculated. The negative infinite value
will be represented as the minimum number that the attribute
that represents the RTO can get. Often the computer lan-
guage offers a literal called MIN_VALUE for a given
numerical type.

As step 208 has already been run when step 210 is
performed, all resources RTO CRON expressions are
already converted. If the time delay is a CRON expression,
the literal value is equal to the difference between the
‘Corrected RTO’ of the dependency target resource and the
next date generated by the CRON expression using the
simulation date as base date. This gives the deadline to
activate the resource; otherwise synchronization will be
missed between resources.

Thus in step 210, which is performed after the corrected
RTO is computed in step 208 for each ordered node, an
estimated RTO is calculated as a corrected RTO for each
ordered node remaining as an undefined RTO node. The
estimated RTO is calculated as a function of: (a) the cor-
rected RTO of each successor node of each remaining
undefined RTO node; and (b) the time delay represented by
the edge that directly connects each remaining undefined
RTO node to said each successor node

While a method to calculate an Estimated RTO has been
described in one embodiment, alternative methods to esti-
mate undefined RTO could also be applied. For example
another way to calculate Xi is to set the values to Ri without
taking into account the time delays di. This is equivalent to
set the (R, Ri) dependency time delay to zero and thus to
transform the asynchronous dependency to a synchronous
one.

The skilled person will appreciate that if some resources
still have undefined ‘Corrected RTO’, the process is partially
complete. In that case, these resources are placed at the
beginning of the final sequence. Similarly, if negative ‘Cor-
rected RTO’ is found for resource having the current state

10

15

20

25

30

35

40

45

50

55

60

65

8

not equal to the target state, the skilled person will interpret
that the constraints provided by the business are too strict or
the IT solution design is not optimized because the time
delays between resources are too high. This case should then
be forwarded to the business and IT department.

After step 208 and optionally step 210 are performed, the
method goes to step 212 wherein all resources are sorted
based on their ‘Corrected RTO’. In step 212, the ordered
nodes are reordered in the dependency sequence according
to an ascending order of the corrected RTO of the ordered
nodes to form an activation sequence of the multiple nodes
defining a time ordering of activation of the unique
resources represented by the multiple nodes

The optimized activation sequence is defined by an
ascending sort of the resources regarding their ‘Corrected
RTO’. The comparator for operating the sort operation may
be a conventional numerical comparator, except if two
resources have the same ‘Corrected RTO’, then the topo-
logical sort found in step 204 is used in the reverse order to
determine the final order between these two resources. This
means that if a resource ‘B’ is placed after another resource
‘A’ in the topological sort while they have the same ‘Cor-
rected RTO’, then resource ‘B’ will come in first because it
should be started before resource ‘A’ in order to respect the
dependency between them. Resources that have a current
state equal to the target state can be removed from the
sequence because no action should be taken to bring them to
their target state.

Finally in step 214, the results of this process are pro-
vided.

FIG. 3 depicts a data-model in the Unified Modeling
Language (UML) to store the graph representation and the
results obtained by running the process of the present
invention. The data-model comprises entities such as graph
302, resources 304 and dependencies 306. From the rela-
tion’s direction and cardinality, a skilled person would
deduce, for example, that a graph 302 contains a set of
resources 304 and dependencies 306. A resource 304 is
defined by several parameters as follows:

a name;

an RTO Expression, which can be a literal or a CRON
expression;

a Corrected RTO, which will contain the calculated RTO
regarding the RTO defined by the business and the time
delay on dependencies;

an estimation RTO Boolean flag, which when set to false
means that the corrected RTO value is a real corrected
RTO deducted from the input data (otherwise it is an
estimated RTO);

a current state, wherein this attribute will define the state
of the resource at the time when this method will be
applied and it is possible that the resource is already at
the requested state;

a target state, which is the requested state that should be
reached after the activation sequence found by this
method is applied; and

a current state time stamp, wherein this represents the date
and time when the resource reaches its current state.
This attribute is used to calculate the ‘corrected RTO’
when the current state and the target state are identical.

A dependency 306 is defined by several items:

a source resource;

a target resource;

a time delay expression, which can be a literal or a CRON
expression; and

a state expression, which will define if a dependency is
active or not depending on the state of its source.

US 9,471,379 B2

9

The data-model for the result is shown in the form of:

a Group entity 308: a group contains the resources in the
order as calculated by the method of the present inven-
tion for a given weakly connected graph;

a ResultRun entity 310: as the method is run for multiple
simulation dates, one ResultRun entity represents the
run for a given simulation date; and

a Results entity 312: this is a single object which contains
all runs for different simulation dates.

While the previous data-model represents one embodi-
ment, it is to be appreciated that various other implementa-
tions could be used for providing a computer implemented
representation of the graph data-model. Moreover, addi-
tional attributes/entities could also be added to implement
different algorithms such as cycle detection, weakly con-
nected graph discovering; or other useful attributes related to
the business where the current invention is applied, for
example the owner name of a given resource.

Going now to FIG. 4, the main components used in one
embodiment of the present invention are described.

A ‘Graph Processor’ component (402) is the unit from
which the calls of the different components to operate the
process of the present invention are operated. A “Sorter’
component (404) is coupled to Graph Processor 402 and
allows the realization of the topological sort (step 204 of
FIG. 2) and the ‘Corrected RTO’ sort (step 208 of FIG. 2)
operations.

A ‘RTO Calculator’ component (406) is also coupled to
Graph Processor 402 and allows the calculation of the
‘Corrected RTO’ (step 208 of FIG. 2) and the ‘Estimated
RTO’ (step 210 of FIG. 2).

A ‘CRON-Time Converter’ component 408 is coupled to
the Graph Processor component 402 and allows converting
the CRON expression for RTO and time delay into literal
values depending on the simulation date, the current ‘Cor-
rected RTO’ of the resource or the source of the dependency
for a time delay conversion. This component is called at
steps 208 and 210 of FIG. 2.

FIGS. 7 to 11 exemplify the method of the present
invention at different steps of the process.

The example defined in FIG. 7 shows several resources
R1 to R7 linked by different dependencies. Each dependency
is characterized by a time delay. This example is based on a
disaster recovery plan scenario where all resources have
only two states ‘ON’ and ‘OFF’, the current state for all
resources is ‘OFF’ and the target state ‘ON’. The state
expression on all dependencies indicates that all dependen-
cies are active. Each resource has a RTO initially defined by
business constraint except R5 for which the RTO is
unknown and represented by a positive infinite value. In this
example, R1 has a RTO equal to “1 hour” while R4 has a
RTO defined as “Monday, 12:00” and so, for each resource
contributing to the general system to be analyzed.

Each dependency has a time delay, and there are synchro-
nous and asynchronous dependencies. Asynchronous depen-
dencies can be literal or based on an expression. For
example, the time delay of dependency between R1 and R3
is zero (synchronous); the time delay of dependency
between R2 and R4 is equal to “1 hour”, as well as the time
delay between R6 and R7 (asynchronous literal based),
while the time delay between R3 and R4 is defined as
“Monday 11:00” (asynchronous expression based).

As already explained, RTOs and time delays may be
expressed as literal values or CRON expressions. Moreover,
in this example only one simulation date is defined: Simu-
lation date/time="“Monday 6:00”; but the process may be
repeated for any number of additional simulation dates.

10

15

20

25

30

35

40

45

50

55

60

65

10

As previously explained, a pre-requisite step is to remove
all cycles from the graph and split the graph in weakly
connected graphs as shown by steps 110, 112 and 114 of
FIG. 1.

In the example of FIG. 7, two weakly connected graphs
are respectively made of resources R1 to R5 for the first
graph consisting of 5 nodes and of resources R6 and R7 for
the second graph consisting of 2 nodes. Generally, the DAG
of the present invention consists of at least 2 nodes (e.g., 2
nodes, 3 nodes , 4 nodes, 5 nodes, etc., or at least two nodes,
at least 3 nodes, at least 4 nodes, at least 5 nodes, etc.).

The multiple nodes in the first graph of resources R1 to RS
in FIG. 7 comprise:

at least one node not connected to any successor node,

at least one node connected to at least two successor

nodes,

at least one node to which no predecessor node is con-

nected, and

at least one node to which at least two predecessor nodes

are connected.

The following description is focused on the first graph
composed by resources R1 to R5. As per step 204 of FIG. 2,
a topological sort on the graph is performed. Depending on
the algorithm used and the data-model representation
applied, the result of the topological sort may slightly vary.
FIG. 8 exemplifies one representation of a topological sort
on resource R1 to R5. By reading this topological sort in the
reverse order, the activation sequence of the resources gives
that R4 is to be activated first, then R3, then R2, then RS and
finally R1. Such sequence not being optimized for the
business objective and the time delay due to dependency
between resources, an optimization is to be found by running
the method of the present invention.

If the graph for resources R1 to R5 in FIG. 7 is denoted
as a first DAG, then the graph of topologically sorted nodes
in FIG. 8 may be denoted as a second DAG depicting the
dependency sequence of ordered nodes and comprising
directed paths identifying each two nodes connected by a
directed edge in the first DAG of FIG. 7.

FIG. 9 shows the result after the ‘Corrected RTO’ calcu-
lation is done as per step 208 of FIG. 2. To achieve this
result, each resource R1 to R5 in FIG. 7 is analyzed one after
the other in the order defined by the topological sort of FIG.
8 according to the following algorithm for computing the
corrected RTO for each ordered node in the dependency
sequence depicted in FIG. 8.

For each ordered node to which no predecessor node is
connected, the corrected RTO of each said ordered node is
set equal to the predefined RTO of said each ordered node.

For each ordered node to which at least one predecessor
node is connected:

for each predecessor node of at least one predecessor

node, the method computes a sum of the corrected RTO
of each predecessor node and the time delay repre-
sented by the edge that directly connects each prede-
cessor node to each ordered node, which computes at
least one sum such that each sum of the at least one sum
corresponds to a respective predecessor node of the at
least one predecessor node; and

the corrected RTO of each ordered node is set equal to the

minimum of the predefined RTO of said each ordered
node and a minimum sum of the at least one sum. The
preceding algorithm is applied to the example in FIG.
7 as follows.

A ‘Corrected RTO’ attribute is initialized with a positive
infinite value and an ‘Estimated RTO’ flag is set to false as
specified in step 206.

US 9,471,379 B2

11

Analyzing R1 shows that R1 doesn’t have any predeces-
sor. So, the ‘Corrected RTO’ of R1 is set to its current RTO.

Next, R5 is analyzed and similarly the ‘Corrected RTO’ of
RS5 is set to its current RTO.

The ‘Corrected RTO’ of R2 is set to the RTO value of “3
hours” because the sum of the ‘Corrected RTO’ of R1 (1
hour) and the time delay between R1 and R2 (3 hours) is
equal to “4 hours” which is greater than the current ‘Cor-
rected RTO’ of R2 (3 hours).

The ‘Corrected RTO’ of R3 is set to “1 hour” because for
the dependency (R1,R3), the sum of the ‘Corrected RTO’ of
R1 and the time delay is equal to “1 hour”. For the other
dependency (R5, R3), the sum of the ‘Corrected RTO’ of RS
and the time delay is a positive infinite value. So, the
‘Corrected RTO’ of R3 is set to “1 hour” because it is the
minimum value between the current ‘Corrected RTO’ of R3
(2 hours), the (R1, R3) calculation (1 hour), and the positive
infinite value provided by the calculation of (RS, R3).

The ‘Corrected RTO’ of R4 is initially set to “6 hours”
because the CRON expression is “Monday 12:00 AM” and
the simulation date is “Monday 6:00 AM”. The time delay
CRON expression of (R3, R4) is set to “4 hours” because the
simulation date is “Monday 6:00 AM”, but as from the
above calculation, the process knows that R3 should be
ready 1 hour after the simulation date, meaning on “Monday
7:00 AM”, and as the time delay is set as “Monday 11:00
AM?”, the literal time delay becomes “4 hours”. The sum of
the ‘Corrected RTO’ of R3 and the time delay (R3, R4) is
thus “1 hour+4 hours=5 hours”. The sum of the ‘Corrected
RTO’ of R2 and the time delay (R2, R4) is thus “3 hours+1
hour=4 hours”. The minimum value between these three
computed values (R4 initial=6 hours, (R3,R4)=5 hours and
(R2,R4)=4 hours) is “4 hours” and thus the ‘Corrected RTO’
of R4 is finally set to “4 hours”.

FIG. 9 shows that R5 still doesn’t have a defined RTO. So,
step 210 of the method of the present invention is run to
calculate an ‘Estimated RTO’ for R5. The graph is traversed
following the reverse order defined by the topological sort
for calculating the estimated RTO of said each remaining
undefined RTO node comprises according to the following
algorithm.

For each successor node of at least one successor node of
said each remaining undefined RTO node, a difference is
calculated between the corrected RTO of each successor
node and the time delay represented by the edge that directly
connects each remaining undefined RTO node to said each
successor node, which calculates at least one difference such
that each difference of the at least one difference corresponds
to a respective successor node of the at least one successor
node. Then, the estimated RTO of each remaining undefined
RTO node is equal to a maximum difference of the at least
one difference.

The results of applying the preceding algorithm to imple-
ment step 210 of FIG. 2 are depicted in FIG. 10. Resources
R4, R3 and R2 are skipped because their ‘Corrected RTO’
is already known.

The ‘Corrected RTO’ of R5 is set to “0.5 hour” because
R5 has only one successor R3, and the ‘Corrected RTO’ of
R3 is “1 hour”, the time delay is “0.5 hour” and the
difference between these is equal to “0.5 hour”. In the case
when such a resource has multiple successors, then the
maximum difference would be taken as becoming the Esti-
mated RTO.

Resource R1 is skipped too because its ‘Corrected RTO’
is defined and known (even if equal to its current RTO).

The final step 212 of FIG. 2 is then applied to the graph
of FIG. 10. Step 212 sorts the resources by reordering the

10

15

20

25

30

35

40

45

50

55

60

65

12

resources based on their ‘Corrected RTO’ in an ascending
order. The results are depicted in FIG. 11 and show the
sequence of activation of resources R1 to R5 according to
the previous calculated RTOs (R1=1, R2=3, R3=1, R4=4
and R5=0.5). So, in the first position, RS with a ‘Corrected
RTO’ equal to 0.5 hour is to be activated first. Next, even if
R1 and R3 have the same ‘Corrected RTO’, the topological
sort provides that R3 is after R1 (as shown in FIG. 8); and
so in the second position, R3 is to be activated, followed by
R1 in the third position. Afterwards, in the fourth position,
R2 is to be activated, and then finally R4 is to be activated.
Thus, as shown, the final optimized activation sequence for
R1 to R5 is: RS, R3, R1, R2 and R4. The preceding
activation sequence is graphically represented in FIG. 11 as
a DAG depicting the multiple nodes in the activation
sequence.

The present invention can be implemented on a computer
system as depicted in FIG. 12. The data are entered in the
storage via the ‘input device’ (1204). The present invention
will load the computer code for implementing method from
the storage (1212) and then read the data from the storage
(1212). The data and method are stored in the memory
(1206). The CPU (1202) will run the method and process the
data to realize the present invention. The results will be sent
to the output device (1208) or to the storage (1212). The
present invention thus provides a computer implemented
method or system and can take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
elements. In a preferred embodiment, the invention is imple-
mented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a com-
puter program product comprising a physically tangible
computer-readable storage medium storing the program
code for use by, or in connection with a computer of the
computer system using a computer processor (i.e., CPU
1202). For the purposes of this description, a computer-
readable storage medium can be any physically tangible
apparatus or device that can store the program for use by, or
in connection with the computer system, apparatus, or
device.

The computer-readable storage medium can be an elec-
tronic, magnetic, optical, electromagnetic, or semiconductor
system (or apparatus or device). Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk—read only
memory (CD-ROM), compact disk—read/write (CD-R/W)
and DVD.

The description of the present invention has been pre-
sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described in order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

It has to be appreciated that while the invention has been
particularly shown and described with reference to a pre-
ferred embodiment to determine an activation sequence of a
plurality of resources; various changes in form and detail
may be made therein without departing from the spirit, and

US 9,471,379 B2

13

scope of the invention. Specifically, the present invention is
well suited and easily applicable by a person skilled in the
art to determine a deactivation sequence of the same plu-
rality or any other plurality of resources.

Also, the time delay for a resource to change from one
state to another can be taken into account by subtracting this
time delay from the RTO before processing the graph.

Particularly, while embodiments of the present invention
have been described in the Information Technology area
where resources are IT resources such as applications,
services, and network components, the present method may
be applied in different industries where an optimized acti-
vation sequence of resources is mandatory.

While particular embodiments of the present invention
have been described herein for purposes of illustration,
many modifications and changes will become apparent to
those skilled in the art. Accordingly, the appended claims are
intended to encompass all such modifications and changes as
fall within the true spirit and scope of this invention.

What is claimed is:

1. A method for generating a timing sequence for acti-
vating resources linked through time dependency relation-
ships, said method comprising:

providing, by a processor of a computer system, a first

Direct Acyclic Graph (DAG) comprising multiple
nodes and multiple directed edges, wherein each node
of the multiple nodes represents a unique resource and
is either a predefined Recovery Time Objective (RTO)
node comprising a predefined RTO denoting a maxi-
mum elapsed time that the unique resource is permitted
to remain in its current state or an undefined RTO node
comprising a positive infinite value, wherein the mul-
tiple nodes comprise at least two predefined RTO nodes
and at least zero undefined RTO nodes;

said processor topologically sorting the nodes of the

multiple nodes in the first DAG to order the multiple
nodes in a dependency sequence of ordered nodes, such
that each node in the dependency sequence whose
unique resource has a time dependency on the unique
resource of at least one other node in the dependency
sequence is placed in the dependency sequence before
each node of the at least one other node;

in traversal of the ordered nodes in the dependency

sequence, said processor computing a corrected RTO
for each ordered node in the dependency sequence as a
function of (i) the predefined RTO of said each ordered
node and, for each predecessor node connected to said
each ordered node: (ii) the corrected RTO of said each
predecessor node and (iii) the time delay represented by
the edge that directly connects said each predecessor
node to said each ordered node;

after said computing the corrected RTO for each ordered

node, said processor calculating an estimated RTO as a
corrected RTO for each ordered node remaining as an
undefined RTO node, said estimated RTO calculated as
a function of: (a) the corrected RTO of each successor
node of each remaining undefined RTO node and (b)
the time delay represented by the edge that directly
connects each remaining undefined RTO node to said
each successor node; and

said processor reordering the ordered nodes in the depen-

dency sequence according to an ascending order of the
corrected RTO of the ordered nodes to form an activa-
tion sequence of the multiple nodes defining a time
ordering of activation of the unique resources repre-
sented by the multiple nodes and to yield a second
DAG in which the reordered nodes in the activation

10

15

25

30

35

40

45

50

55

60

65

14

sequence are geometrically sequenced in a one-dimen-
sional linear path in the ascending order of the cor-
rected RTO, wherein a directed edge from a first node
to a second node in each pair of successive nodes in the
second DAG denotes that the second node is to be
activated before the first node is activated.

2. The method of claim 1, wherein each directed edge of
the multiple directed edges represents a time delay and
directly connects two nodes of the multiple nodes in a
direction from a predecessor node of the two nodes to a
successor node of the two nodes, and wherein a predecessor
resource being the unique resource represented by the pre-
decessor node has a time dependency on a successor
resource being the unique resource represented by the suc-
cessor node.

3. The method of claim 1, wherein said computing the
corrected RTO for each ordered node in the dependency
sequence comprises:

for each ordered node to which no predecessor node is

connected, setting the corrected RTO of each said
ordered node as equal to the predefined RTO of said
each ordered node;

for each ordered node to which at least one predecessor

node is connected:

for each predecessor node of the at least one predeces-
sor node, computing a sum of the corrected RTO of
each said predecessor node and the time delay rep-
resented by the edge that directly connects said each
predecessor node to said each ordered node, which
computes at least one sum such that each sum of the
at least one sum corresponds to a respective prede-
cessor node of the at least one predecessor node; and

setting the corrected RTO of said each ordered node as
equal to the minimum of: the predefined RTO of said
each ordered node and a minimum sum of the at least
one sum.

4. The method of claim 1, wherein the at least zero
undefined RTO nodes comprise at least one undefined RTO
node, and wherein said calculating the estimated RTO of
said each remaining undefined RTO node comprises:

for each successor node of at least one successor node of

said each remaining undefined RTO node, calculating a
difference between the corrected RTO of each said
successor node and the time delay represented by the
edge that directly connects said each remaining unde-
fined RTO node to said each successor node, which
calculates at least one difference such that each differ-
ence of the at least one difference corresponds to a
respective successor node of the at least one successor
node; and

setting the estimated RTO of said each remaining unde-

fined RTO node as equal to a maximum difference of
the at least one difference.

5. The method of claim 1, wherein the method further
comprises:

said processor representing the topologically sorted nodes

as a third DAG depicting the dependency sequence of
ordered nodes and comprising directed paths, wherein
each directed path in the third DAG identifies two
nodes in the first DAG connected by a respective
directed edge in the first DAG.

6. The method of claim 1, wherein the at least zero
undefined RTO nodes comprise at least one undefined RTO
node.

7. A computer program product, comprising a computer
readable hardware storage device having a computer read-
able program code stored therein, said program code con-

US 9,471,379 B2

15

figured to be executed by a processor of a computer system
to implement a method for generating a timing sequence for
activating resources linked through time dependency rela-
tionships, said method comprising:

providing, by said processor, a first Direct Acyclic Graph

(DAG) comprising multiple nodes and multiple
directed edges, wherein each node of the multiple
nodes represents a unique resource and is either a
predefined Recovery Time Objective (RTO) node com-
prising a predefined RTO denoting a maximum elapsed
time that the unique resource is permitted to remain in
its current state or an undefined RTO node comprising
a positive infinite value, wherein the multiple nodes
comprise at least two predefined RTO nodes and at least
zero undefined RTO nodes;

said processor topologically sorting the nodes of the

multiple nodes in the first DAG to order the multiple
nodes in a dependency sequence of ordered nodes, such
that each node in the dependency sequence whose
unique resource has a time dependency on the unique
resource of at least one other node in the dependency
sequence is placed in the dependency sequence before
each node of the at least one other node;

in traversal of the ordered nodes in the dependency

sequence, said processor computing a corrected RTO
for each ordered node in the dependency sequence as a
function of (i) the predefined RTO of said each ordered
node and, for each predecessor node connected to said
each ordered node: (ii) the corrected RTO of said each
predecessor node and (iii) the time delay represented by
the edge that directly connects said each predecessor
node to said each ordered node;

after said computing the corrected RTO for each ordered

node, said processor calculating an estimated RTO as a
corrected RTO for each ordered node remaining as an
undefined RTO node, said estimated RTO calculated as
a function of: (a) the corrected RTO of each successor
node of each remaining undefined RTO node and (b)
the time delay represented by the edge that directly
connects each remaining undefined RTO node to said
each successor node; and

said processor reordering the ordered nodes in the depen-

dency sequence according to an ascending order of the
corrected RTO of the ordered nodes to form an activa-
tion sequence of the multiple nodes defining a time
ordering of activation of the unique resources repre-
sented by the multiple nodes and to yield a second
DAG in which the reordered nodes in the activation
sequence are geometrically sequenced in a one-dimen-
sional linear path in the ascending order of the cor-
rected RTO, wherein a directed edge from a first node
to a second node in each pair of successive nodes in the
second DAG denotes that the second node is to be
activated before the first node is activated.

8. The computer program product of claim 7, wherein
each directed edge of the multiple directed edges represents
a time delay and directly connects two nodes of the multiple
nodes in a direction from a predecessor node of the two
nodes to a successor node of the two nodes, and wherein a
predecessor resource being the unique resource represented
by the predecessor node has a time dependency on a
successor resource being the unique resource represented by
the successor node.

9. The computer program product of claim 7, wherein said
computing the corrected RTO for each ordered node in the
dependency sequence comprises:

5

10

15

20

25

30

35

40

45

50

60

16

for each ordered node to which no predecessor node is
connected, setting the corrected RTO of each said
ordered node as equal to the predefined RTO of said
each ordered node;

for each ordered node to which at least one predecessor

node is connected:

for each predecessor node of the at least one predeces-
sor node, computing a sum of the corrected RTO of
each said predecessor node and the time delay rep-
resented by the edge that directly connects said each
predecessor node to said each ordered node, which
computes at least one sum such that each sum of the
at least one sum corresponds to a respective prede-
cessor node of the at least one predecessor node; and

setting the corrected RTO of said each ordered node as
equal to the minimum of: the predefined RTO of said
each ordered node and a minimum sum of the at least
one sum.

10. The computer program product of claim 7, wherein
the at least zero undefined RTO nodes comprise at least one
undefined RTO node, and wherein said calculating the
estimated RTO of said each remaining undefined RTO node
comprises:

for each successor node of at least one successor node of

said each remaining undefined RTO node, calculating a
difference between the corrected RTO of each said
successor node and the time delay represented by the
edge that directly connects said each remaining unde-
fined RTO node to said each successor node, which
calculates at least one difference such that each differ-
ence of the at least one difference corresponds to a
respective successor node of the at least one successor
node; and

setting the estimated RTO of said each remaining unde-

fined RTO node as equal to a maximum difference of
the at least one difference.

11. The computer program product of claim 7, wherein the
method further comprises:

said processor representing the topologically sorted nodes

as a third DAG depicting the dependency sequence of
ordered nodes and comprising directed paths, wherein
each directed path in the third DAG identifies two
nodes in the first DAG connected by a respective
directed edge in the first DAG.

12. The computer program product of claim 7, wherein
the at least zero undefined RTO nodes comprise at least one
undefined RTO node.

13. A computer system comprising a processor and a
computer readable memory unit coupled to the processor,
said memory unit containing program code configured to be
executed by the processor to implement a method for
generating a timing sequence for activating resources linked
through time dependency relationships, said method com-
prising:

providing, by said processor, a first Direct Acyclic Graph

(DAG) comprising multiple nodes and multiple
directed edges, wherein each node of the multiple
nodes represents a unique resource and is either a
predefined Recovery Time Objective (RTO) node com-
prising a predefined RTO denoting a maximum elapsed
time that the unique resource is permitted to remain in
its current state or an undefined RTO node comprising
a positive infinite value, wherein the multiple nodes
comprise at least two predefined RTO nodes and at least
zero undefined RTO nodes;

said processor topologically sorting the nodes of the

multiple nodes in the first DAG to order the multiple

US 9,471,379 B2

17

nodes in a dependency sequence of ordered nodes, such
that each node in the dependency sequence whose
unique resource has a time dependency on the unique
resource of at least one other node in the dependency
sequence is placed in the dependency sequence before
each node of the at least one other node;

in traversal of the ordered nodes in the dependency

sequence, said processor computing a corrected RTO
for each ordered node in the dependency sequence as a
function of (i) the predefined RTO of said each ordered
node and, for each predecessor node connected to said
each ordered node: (ii) the corrected RTO of said each
predecessor node and (iii) the time delay represented by
the edge that directly connects said each predecessor
node to said each ordered node;

after said computing the corrected RTO for each ordered

node, said processor calculating an estimated RTO as a
corrected RTO for each ordered node remaining as an
undefined RTO node, said estimated RTO calculated as
a function of: (a) the corrected RTO of each successor
node of each remaining undefined RTO node and (b)
the time delay represented by the edge that directly
connects each remaining undefined RTO node to said
each successor node; and

said processor reordering the ordered nodes in the depen-

dency sequence according to an ascending order of the
corrected RTO of the ordered nodes to form an activa-
tion sequence of the multiple nodes defining a time
ordering of activation of the unique resources repre-
sented by the multiple nodes and to yield a second
DAG in which the reordered nodes in the activation
sequence are geometrically sequenced in a one-dimen-
sional linear path in the ascending order of the cor-
rected RTO, wherein a directed edge from a first node
to a second node in each pair of successive nodes in the
second DAG denotes that the second node is to be
activated before the first node is activated.

14. The computer system of claim 13, wherein each
directed edge of the multiple directed edges represents a
time delay and directly connects two nodes of the multiple
nodes in a direction from a predecessor node of the two
nodes to a successor node of the two nodes, and wherein a
predecessor resource being the unique resource represented
by the predecessor node has a time dependency on a
successor resource being the unique resource represented by
the successor.

15. The computer system of claim 13, wherein said
computing the corrected RTO for each ordered node in the
dependency sequence comprises:

10

15

20

25

30

35

40

45

18

for each ordered node to which no predecessor node is

connected, setting the corrected RTO of each said
ordered node as equal to the predefined RTO of said
each ordered node;

for each ordered node to which at least one predecessor

node is connected:

for each predecessor node of the at least one predeces-
sor node, computing a sum of the corrected RTO of
each said predecessor node and the time delay rep-
resented by the edge that directly connects said each
predecessor node to said each ordered node, which
computes at least one sum such that each sum of the
at least one sum corresponds to a respective prede-
cessor node of the at least one predecessor node; and

setting the corrected RTO of said each ordered node as
equal to the minimum of: the predefined RTO of said
each ordered node and a minimum sum of the at least
one sum.

16. The computer system of claim 13, wherein the at least
zero undefined RTO nodes comprise at least one undefined
RTO node, and wherein said calculating the estimated RTO
of said each remaining undefined RTO node comprises:

for each successor node of at least one successor node of

said each remaining undefined RTO node, calculating a
difference between the corrected RTO of each said
successor node and the time delay represented by the
edge that directly connects said each remaining unde-
fined RTO node to said each successor node, which
calculates at least one difference such that each differ-
ence of the at least one difference corresponds to a
respective successor node of the at least one successor
node; and

setting the estimated RTO of said each remaining unde-

fined RTO node as equal to a maximum difference of
the at least one difference.

17. The computer system of claim 13, wherein the method
further comprises:
said processor representing the topologically sorted nodes

as a third DAG depicting the dependency sequence of
ordered nodes and comprising directed paths, wherein
each directed path in the third DAG identifies two
nodes in the first DAG connected by a respective
directed edge in the first DAG.

18. The computer system of claim 13, wherein the at least
zero undefined RTO nodes comprise at least one undefined
RTO node.

